
Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- ADC12 5 - 1

ADC12

Introduction

This chapter will introduce you to the use of the analog to digital conversion (ADC) peripheral on

the Stellaris M4F. The lab will use the ADC and sequencer to sample the on-chip temperature

sensor.

Agenda

ADC...

Introduction to ARM® Cortex™-M4F and Peripherals

Code Composer Studio

Introduction to StellarisWare,
Initialization and GPIO

Interrupts and the Timers

ADC12

Hibernation Module

USB

Memory

Floating-Point

BoosterPacks and grLib

Synchronous Serial Interface

UART

µDMA

Chapter Topics

5 - 2 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- ADC12

Chapter Topics

ADC12 ...5-1

Chapter Topics ...5-2

ADC12 ...5-3

Sample Sequencers...5-4

Lab 5: ADC12 ..5-5
Objective..5-5
Procedure ...5-6

Hardware averaging ..5-17

Calling APIs from ROM ...5-18

 ADC12

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- ADC12 5 - 3

ADC12

Analog-to-Digital Converter

 Stellaris LM4F MCUs feature two ADC

modules (ADC0 and ADC1) that can be

used to convert continuous analog

voltages to discrete digital values

 Each ADC module has 12-bit resolution

 Each ADC module operates independently

and can:

• Execute different sample sequences

• Sample any of the shared analog input

channels

• Generate interrupts & triggers

ADC

VIN VOUT

Input
Channels

Triggers

Interrupts/
Triggers

Interrupts/
Triggers

12

V
IN

V
O

U
T

000

001

011

010

100

101

t

t

ADC1

ADC0

Features...

LM4F120H5QR ADC Features

 Two 12-bit 1MSPS ADCs

 12 shared analog input channels

 Single ended & differential input
configurations

 On-chip temperature sensor

 Maximum sample rate of one million
samples/second (1MSPS).

 Fixed references (VDDA/GNDA) due to
pin-count limitations

 4 programmable sample conversion
sequencers per ADC

 Separate analog power & ground pins

 Flexible trigger control
• Controller/ software

• Timers

• Analog comparators

• GPIO

 2x to 64x hardware averaging

 8 Digital comparators / per ADC

 2 Analog comparators

 Optional phase shift in sample time,
between ADC modules …
programmable from 22.5 ° to 337.5°

ADC

VIN VOUT

Sequencers...

Sample Sequencers

5 - 4 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- ADC12

Sample Sequencers

ADC Sample Sequencers

 Stellaris LM4F ADC’s collect and sample data using programmable sequencers.

 Each sample sequence is a fully programmable series of consecutive (back-to-back)

samples that allows the ADC module to collect data from multiple input sources without

having to be re-configured.

 Each ADC module has 4 sample sequencers that control sampling and data capture.

 All sample sequencers are identical except for the number of samples they can capture

and the depth of their FIFO.

 To configure a sample sequencer, the following information is required:

• Input source for each sample

• Mode (single-ended, or differential) for each sample

• Interrupt generation on sample completion for each sample

• Indicator for the last sample in the sequence

 Each sample sequencer can transfer data

independently through a dedicated μDMA channel.
Sequencer

Number of
Samples

Depth of FIFO

SS 3 1 1

SS 2 4 4

SS 1 4 4

SS 0 8 8

Lab...

 Lab 5: ADC12

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- ADC12 5 - 5

Lab 5: ADC12

Objective

In this lab we’ll use the ADC12 and sample sequencers to measure the data from the on-chip

temperature sensor. We’ll use Code Composer to display the changing values.

Lab 5: ADC12

 Enable and configure ADC and
sequencer

 Measure and display values from
internal temperature sensor

 Add hardware averaging

 Use ROM peripheral driver library
calls and note size difference

Agenda ...

USB Emulation Connection

Lab 5: ADC12

5 - 6 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- ADC12

Procedure

Import Lab5 Project

1. We have already created the Lab5 project for you with an empty main.c, a startup file

and all necessary project and build options set. Maximize Code Composer and click

Project Import Existing CCS Eclipse Project. Make the settings shown below and

click Finish. Make sure that the “Copy projects into workspace” checkbox is

unchecked.

Header Files

2. Delete the current contents of main.c. Add the following lines into main.c to include

the header files needed to access the StellarisWare APIs:

#include "inc/hw_memmap.h"

#include "inc/hw_types.h"

#include "driverlib/debug.h"

#include "driverlib/sysctl.h"

#include "driverlib/adc.h"

adc.h: definitions for using the ADC driver

 Lab 5: ADC12

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- ADC12 5 - 7

Driver Library Error Routine

3. Run-time parameter checking by the Peripheral Driver Library is fairly cursory since

excessive checking would have a negative effect on cycle count. But, during the debug

process, you may find that you have called a driver library API with incorrect parameters

or a library function generates an error for some other reason. The following code will be

called if the driver library encounters such an error. In order for the code to run, DEBUG

needs to be added to the pre-defined symbols for the project … we’ll do that later.

Leave a blank line for spacing and add these lines of code after the lines above:

#ifdef DEBUG

void__error__(char *pcFilename, unsigned long ulLine)

{

}

#endif

Main()

4. Set up the main() routine by adding the three lines below:

int main(void)

{

}

5. The following definition will create an array that will be used for storing the data read

from the ADC FIFO. It must be as large as the FIFO for the sequencer in use. We will be

using sequencer 1 which has a FIFO depth of 4. If another sequencer was used with a

smaller or deeper FIFO, then the array size would have to be changed. For instance, se-

quencer 0 has a depth of 8.

Add the following line of code as your first line of code inside main() :

unsigned long ulADC0Value[4];

6. We’ll need some variables for calculating the temperature from the sensor data. The first

variable is for storing the average of the temperature. The remaining variables are used to

store the temperature values for Celsius and Fahrenheit. All are declared as 'volatile' so

that each variable will not be optimized out by the compiler and will be available to the

'Expression' or 'Local' window(s) at run-time. Add these lines after that last line:

volatile unsigned long ulTempAvg;

volatile unsigned long ulTempValueC;

volatile unsigned long ulTempValueF;

7. Set up the system clock again to run at 40MHz. Add a line for spacing and add this line

after the last ones:

SysCtlClockSet(SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL_OSC_MAIN|SYSCTL_XTAL_16MHZ);

Lab 5: ADC12

5 - 8 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- ADC12

8. Let’s enable the ADC0 module next. Add a line for spacing and add this line after the last

one:

SysCtlPeripheralEnable(SYSCTL_PERIPH_ADC0);

9. As an example, let’s set the ADC sample rate to 250 kilo-samples per second (since

we’re measuring temperature, a slower speed would be fine, but let’s go with this). The

SysCtlADCSpeedSet() API can also set the sample rate to additional device specific

speeds (125KSPS, 500KSPS and 1MSPS)..

Add the following line directly after the last one:

SysCtlADCSpeedSet(SYSCTL_ADCSPEED_250KSPS);

10. Before we configure the ADC sequencer settings, we should disable ADC sequencer 1.

Add this line after the last one:

ADCSequenceDisable(ADC0_BASE, 1);

11. Now we can configure the ADC sequencer. We want to use ADC0, sample sequencer 1,

we want the processor to trigger the sequence and we want to use the highest priority.

Add a line for spacing and add this line of code:

ADCSequenceConfigure(ADC0_BASE, 1, ADC_TRIGGER_PROCESSOR, 0);

12. Next we need to configure all four steps in the ADC sequencer. Configure steps 0 - 2 on

sequencer 1 to sample the temperature sensor (ADC_CTL_TS). In this example, our code

will average all four samples of temperature sensor data on sequencer 1 to calculate the

temperature, so all four sequencer steps will measure the temperature sensor. For more

information on the ADC sequencers and steps, reference the device specific datasheet.

Add the following three lines after the last:

ADCSequenceStepConfigure(ADC0_BASE, 1, 0, ADC_CTL_TS);

ADCSequenceStepConfigure(ADC0_BASE, 1, 1, ADC_CTL_TS);

ADCSequenceStepConfigure(ADC0_BASE, 1, 2, ADC_CTL_TS);

13. The final sequencer step requires a couple of extra settings. Sample the temperature

sensor (ADC_CTL_TS) and configure the interrupt flag (ADC_CTL_IE) to be set when

the sample is done. Tell the ADC logic that this is the last conversion on sequencer 1

(ADC_CTL_END). Add this line directly after the last ones:

ADCSequenceStepConfigure(ADC0_BASE, 1, 3, ADC_CTL_TS | ADC_CTL_IE | ADC_CTL_END);

14. Now we can enable the ADC sequencer 1. Add this line directly after the last one:

ADCSequenceEnable(ADC0_BASE, 1);

 Lab 5: ADC12

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- ADC12 5 - 9

15. Still within main(), add a while loop to your code. Add a line for spacing and enter

these three lines of code:

while(1)

{

}

16. Save your work. As a sanity-check, right-click on main.c in the Project pane and select

Build Selected File(s). If you are having issues, check the code below:

#include "inc/hw_memmap.h"
#include "inc/hw_types.h"

#include "driverlib/debug.h"

#include "driverlib/sysctl.h"
#include "driverlib/adc.h"

#ifdef DEBUG
void__error__(char *pcFilename, unsigned long ulLine)

{
}

#endif

int main(void)

{

 unsigned long ulADC0Value[4];
 volatile unsigned long ulTempAvg;

 volatile unsigned long ulTempValueC;

 volatile unsigned long ulTempValueF;

 SysCtlClockSet(SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL_OSC_MAIN|SYSCTL_XTAL_16MHZ);

 SysCtlPeripheralEnable(SYSCTL_PERIPH_ADC0);

 SysCtlADCSpeedSet(SYSCTL_ADCSPEED_250KSPS);

 ADCSequenceDisable(ADC0_BASE, 1);

 ADCSequenceConfigure(ADC0_BASE, 1, ADC_TRIGGER_PROCESSOR, 0);

 ADCSequenceStepConfigure(ADC0_BASE, 1, 0, ADC_CTL_TS);
 ADCSequenceStepConfigure(ADC0_BASE, 1, 1, ADC_CTL_TS);

 ADCSequenceStepConfigure(ADC0_BASE, 1, 2, ADC_CTL_TS);

 ADCSequenceStepConfigure(ADC0_BASE, 1, 3, ADC_CTL_TS | ADC_CTL_IE | ADC_CTL_END);
 ADCSequenceEnable(ADC0_BASE, 1);

 while(1)
 {

 }

}

When you build this code, you may get a warning “ulADC0Value was declared

but never referenced”. Ignore this warning for now, we’ll add code to use this

array later.

Lab 5: ADC12

5 - 10 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- ADC12

Inside the while(1) Loop

Inside the while(1) we’re going to read the value of the temperature sensor and

calculate the temperature endlessly.

17. The indication that the ADC conversion is complete will be the ADC interrupt status flag.

It’s always good programming practice to make sure that the flag is cleared before

writing code that depends on it. Add the following line as your first line of code inside

the while(1) loop:

ADCIntClear(ADC0_BASE, 1);

18. Then we can trigger the ADC conversion with software. ADC conversions can also be

triggered by many other sources. Add the following line after the last:

ADCProcessorTrigger(ADC0_BASE, 1);

19. Then we need to wait for the conversion to complete. Obviously, a better way to do this

would be to use an interrupt, rather than burn CPU cycles waiting, but that exercise is left

for the student. Add a line for spacing and add the following three lines of code:

while(!ADCIntStatus(ADC0_BASE, 1, false))

{

}

20. When code execution exits the loop in the previous step, we know that conversion is

complete and we can read the ADC value from the ADC Sample Sequencer 1 FIFO. The

function we’ll be using copies data from the specified sample sequencer output FIFO to a

buffer in memory. The number of samples available in the hardware FIFO are copied into

the buffer, which must be large enough to hold that many samples. This will only return

the samples that are presently available, which might not be the entire sample sequence if

you attempt to access the FIFO before the conversion is complete. Add a line for spacing

and add the following line after the last:

ADCSequenceDataGet(ADC0_BASE, 1, ulADC0Value);

21. Calculate the average of the temperature sensor data. We’re going to cover floating point

operations later, so this math will be fixed-point.

The addition of 2 is for rounding. Since 2/4 = 1/2 = 0.5, 1.5 will be rounded to 2.0 with

the addition of 0.5. In the case of 1.0, when 0.5 is added to yield 1.5, this will be rounded

back down to 1.0 due to the rules of integer math.

Add this line after the last on a single line:

ulTempAvg = (ulADC0Value[0] + ulADC0Value[1] + ulADC0Value[2] +

ulADC0Value[3] + 2)/4;

 Lab 5: ADC12

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- ADC12 5 - 11

22. Now that we have the averaged reading from the temperature sensor, we can calculate the

Celsius value of the temperature. The equation below is shown in section 13.3.6 of the

LM4F120H5QR datasheet. Division is performed last to avoid truncation due to integer

math rules. A later lab will cover floating point operations.

TEMP = 147.5 – ((75 * (VREFP – VREFN) * ADCVALUE) / 4096)

We need to multiply everything by 10 to stay within the precision needed. The divide by

10 at the end is needed to get the right answer. VREFP – VREFN is Vdd or 3.3 volts.

We’ll multiply it by 10, and then 75 to get 2475.

Enter the following line of code directly after the last:

ulTempValueC = (1475 - ((2475 * ulTempAvg)) / 4096)/10;

23. Once you have the Celsius temperature, calculating the Fahrenheit temperature is easy.

Hold the division until the end to avoid truncation.

The conversion from Celsius to Fahrenheit is F = (C * 9)/5 +32. Adjusting that a little

gives: F = ((C * 9) + 160) / 5

Enter the following line of code directly after the last:

ulTempValueF = ((ulTempValueC * 9) + 160) / 5;

Lab 5: ADC12

5 - 12 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- ADC12

24. Save your work and compare it with our code below:

#include "inc/hw_memmap.h"
#include "inc/hw_types.h"

#include "driverlib/debug.h"

#include "driverlib/sysctl.h"
#include "driverlib/adc.h"

#ifdef DEBUG
void__error__(char *pcFilename, unsigned long ulLine)

{

}
#endif

int main(void)
{

 unsigned long ulADC0Value[4];

 volatile unsigned long ulTempAvg;

 volatile unsigned long ulTempValueC;

 volatile unsigned long ulTempValueF;

 SysCtlClockSet(SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL_OSC_MAIN|SYSCTL_XTAL_16MHZ);

 SysCtlPeripheralEnable(SYSCTL_PERIPH_ADC0);
 SysCtlADCSpeedSet(SYSCTL_ADCSPEED_250KSPS);

 ADCSequenceDisable(ADC0_BASE, 1);

 ADCSequenceConfigure(ADC0_BASE, 1, ADC_TRIGGER_PROCESSOR, 0);

 ADCSequenceStepConfigure(ADC0_BASE, 1, 0, ADC_CTL_TS);

 ADCSequenceStepConfigure(ADC0_BASE, 1, 1, ADC_CTL_TS);
 ADCSequenceStepConfigure(ADC0_BASE, 1, 2, ADC_CTL_TS);

 ADCSequenceStepConfigure(ADC0_BASE, 1, 3, ADC_CTL_TS | ADC_CTL_IE | ADC_CTL_END);

 ADCSequenceEnable(ADC0_BASE, 1);

 while(1)

 {
 ADCIntClear(ADC0_BASE, 1);

 ADCProcessorTrigger(ADC0_BASE, 1);

 while(!ADCIntStatus(ADC0_BASE, 1, false))

 {
 }

 ADCSequenceDataGet(ADC0_BASE, 1, ulADC0Value);
 ulTempAvg = (ulADC0Value[0] + ulADC0Value[1] + ulADC0Value[2] + ulADC0Value[3] + 2)/4;

 ulTempValueC = (1475 - ((2475 * ulTempAvg)) / 4096)/10;

 ulTempValueF = ((ulTempValueC * 9) + 160) / 5;
 }

}

You can also find this code in main1.txt in your project folder.

 Lab 5: ADC12

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- ADC12 5 - 13

Add Pre-defined Symbol

25. Right-click on Lab5 in the Project Explorer pane and select Properties. Under Build

ARM Compiler, click the + next to Advanced Options. Then click on Predefined

Symbols. In the top Pre-define NAME window, add the symbol DEBUG as shown below

and click OK. In future labs, the project will already have this symbol defined.

Lab 5: ADC12

5 - 14 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- ADC12

Build and Run the Code

26. Compile and download your application by clicking the Debug button on the menu

bar. If you have any issues, correct them, and then click the Debug button again. After a

successful build, the CCS Debug perspective will appear.

27. Click on the Expressions tab (upper right). Remove all expressions (if there are any) from

the Expressions pane by right-clicking inside the pane and selecting Remove All.

Find the ulADC0Value, ulTempAvg, ulTempValueC and ulTempValueF

variables in the last four lines of code. Double-click on a variable to highlight it, then

right-click on it, select Add Watch Expression and then click OK. Do this for all four

variables.

 Lab 5: ADC12

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- ADC12 5 - 15

28. We’d like to set the debugger up so that it will update the windows each time the code

runs. Since there is no line of code after the calculations, we’ll choose one right before

them and display the result of the last calculation.

Click on the first line of code in the while(1) loop;

ADCIntClear(ADC0_BASE, 1);

and then right-click on it. Select Breakpoint (Code Composer Studio) then Breakpoint to

set a breakpoint on this line.

Right-click on the breakpoint symbol and select Breakpoint Properties … Find the

line that contains Action and click on the Remain Halted value. That’s the normal way a

breakpoint should act, but let’s change it to Update View (look up and down in the list).

In the dialog below, note that only the Expressions window will be updated. Now the

variables in the Expression window will be updated and the code will continue to

execute. Click OK.

Lab 5: ADC12

5 - 16 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- ADC12

29. Click the Resume button to run the program.

You should see the measured value of u1TempAvg changing up and down slightly.

Changed values from the previous measurement are highlighted in yellow. Use your

finger (rub it briskly on your pants), then touch the

LM4F120 device on the LaunchPad board to warm it. Press your fingers against a cold

drink, then touch the device to cool it. You should quickly see the results on the display.

Bear in mind that the temperature sensor is not calibrated, so the values displayed are not

exact. That’s okay in this experiment, since we’re only looking for changes in the

measurements.

Note how much ulTempAvg is changing (not the rate, the amount). We can reduce the

amount by using hardware averaging in the ADC.

 Hardware averaging

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- ADC12 5 - 17

Hardware averaging

30. Click the Terminate button to return to the CCS Edit perspective.

Find the ADC initialization section of your code as shown below:

Right after the SysCtlADCSpeedSet() call, add the following line:

ADCHardwareOversampleConfigure(ADC0_BASE, 64);

Your code will look like this:

The last parameter in the API call is the number of samples to be averaged. This number

can be 2, 4, 8, 16, 32 or 64. Our selection means that each sample in the ADC FIFO will

be the result of 64 measurements averaged together.

31. Build, download and run the code on your LaunchPad board. Observe the ulTempAvg

variable in the Expressions window. You should notice that it is changing at a much

slower rate than before.

Calling APIs from ROM

5 - 18 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- ADC12

Calling APIs from ROM

32. Before we make any changes, let’s see how large the code section is for our existing

project. Click the Terminate button to return to the CCS Edit perspective. In the

Project Explorer, expand the Debug folder under the Lab5 project. Double-click on

Lab5.map.

33. Code Composer keeps a list of files that have changed since the last build. When you

click the build button, CCS compiles and assembles those files into relocatable object

files. (You can force CCS to completely rebuild the project by either cleaning the project

or rebuilding all). Then, in a multi-pass process, the linker creates the output file (.out)

using the device’s memory map as defined in the linker command (.cmd) file. The build

process also creates a map file (.map) that explains how large the sections of the program

are (.text = code) and where they were placed in the memory map.

In the Lab5.map file, find the SECTION ALLOCATION MAP and look for .text

like shown below:

The length of our .text section is 690h. Check yours and write it here: ___________

34. Remember that the M4F on-board ROM contains the Peripheral Driver Library. Rather

than adding those library calls to our flash memory, we can call them from ROM. This

will reduce the code size of our program in flash memory. In order to do so, we need to

add support for the ROM in our code.

In main.c, add the following include statement as the last one in your list of includes at

the top of your code:

#include "driverlib/rom.h"

35. Open your properties for Lab5 by right-clicking on Lab5 in the Project Explorer pane

and clicking Properties. Under Build ARM Compiler Advanced Options, click on

Predefined Symbols. Add the following symbol to the top window:

TARGET_IS_BLIZZARD_RA1

Blizzard is the internal TI product name for the LM4F series. This symbol will give the

libraries access to the API’s in ROM. Click OK.

 Calling APIs from ROM

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- ADC12 5 - 19

36. Back in main.c, add ROM_ to the beginning of every DriverLib call as shown below:

#include "inc/hw_memmap.h"

#include "inc/hw_types.h"

#include "driverlib/debug.h"

#include "driverlib/sysctl.h"

#include "driverlib/adc.h"

#include "driverlib/rom.h"

#ifdef DEBUG

void__error__(char *pcFilename, unsigned long ulLine)

{

}

#endif

int main(void)

{

 unsigned long ulADC0Value[4];

 volatile unsigned long ulTempAvg;

 volatile unsigned long ulTempValueC;

 volatile unsigned long ulTempValueF;

 ROM_SysCtlClockSet(SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL_OSC_MAIN|SYSCTL_XTAL_16MHZ);

 ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_ADC0);

 ROM_SysCtlADCSpeedSet(SYSCTL_ADCSPEED_250KSPS);

 ROM_ADCHardwareOversampleConfigure(ADC0_BASE, 64);

 ROM_ADCSequenceDisable(ADC0_BASE, 1);

 ROM_ADCSequenceConfigure(ADC0_BASE, 1, ADC_TRIGGER_PROCESSOR, 0);

 ROM_ADCSequenceStepConfigure(ADC0_BASE, 1, 0, ADC_CTL_TS);

 ROM_ADCSequenceStepConfigure(ADC0_BASE, 1, 1, ADC_CTL_TS);

 ROM_ADCSequenceStepConfigure(ADC0_BASE, 1, 2, ADC_CTL_TS);

 ROM_ADCSequenceStepConfigure(ADC0_BASE, 1, 3, ADC_CTL_TS | ADC_CTL_IE | ADC_CTL_END);

 ROM_ADCSequenceEnable(ADC0_BASE, 1);

 while(1)

 {

 ROM_ADCIntClear(ADC0_BASE, 1);

 ROM_ADCProcessorTrigger(ADC0_BASE, 1);

 while(!ROM_ADCIntStatus(ADC0_BASE, 1, false))

 {

 }

 ROM_ADCSequenceDataGet(ADC0_BASE, 1, ulADC0Value);

 ulTempAvg = (ulADC0Value[0] + ulADC0Value[1] + ulADC0Value[2] + ulADC0Value[3] + 2)/4;

 ulTempValueC = (1475 - ((2475 * ulTempAvg)) / 4096)/10;

 ulTempValueF = ((ulTempValueC * 9) + 160) / 5;

 }

}

If you’re having issues, this code is saved in your lab folder as main2.txt.

Calling APIs from ROM

5 - 20 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- ADC12

Build, Download and Run Your Code

37. Click the Debug button to build and download your code to the LM4F120H5QR

flash memory. When the process is complete, click the Resume button to run your

code. When you’re sure that everything is working correctly, click the Terminate button

 to return to the CCS Edit perspective.

38. Check the SECTION ALLOCATION MAP in Lab5.map. Our results are shown below:

The new size for our .text section is 3e8h. That’s 40% smaller than before.

Write your results here: ________

39. The method shown in these steps is called “direct ROM calls”. It is also possible to make

mapped ROM calls when you are using devices (like the TI ARM Cortex-M3) that may

or may not have a ROM. Check out section 32.3 in the Peripheral Driver Library User’s

Guide for more information on this technique.

40. When you’re finished, , close the Lab5 project and minimize Code Composer Studio.

 You’re done.

